Pre-Holiday QRP Portable

I wanted to get out and do a little QRP-portable before all the holiday festivities get started. I hadn’t operated from Black Rock Sanctuary in a while, so I headed over there. It was dreary and drizzly today, so it was a good day to operate from the truck and give my homebrew 19-foot vertical another workout.

The vertical antenna in use at Black Rock Sanctuary
The vertical antenna in use at Black Rock Sanctuary

Since the last time I used the 19-foot vertical in the truck, I found a way to ground the antenna to the body of the truck. It was a simple matter of backing out one of the screws that hold the bed liner in place and using it to attach a small L bracket. This now provides a convenient spot to attach my ground lead.

Ground connection for the vertical antenna.
Ground connection for the vertical antenna.

I was using my little MS2 straight key with the KX3 today. The bands were in pretty decent shape and the antenna seemed to be working great. I made a half-dozen SKCC contacts on 40 and 20 meters with some respectable signal reports. One SKCC’er in California called me on 20 meters but the frequency was taken over by other stations. I wasn’t able to complete the QSO but at least I was being heard on the West Coast.

Operating position in the truck
Operating position in the truck

I also had some nice two-way QRP QSOs. W4UV in North Carolina had a great signal on 40M with his Ten Tec QRP rig. Jim N0UR was really pounding in from Minnesota on 20 meters. My favorite QSO of the day was with Dirk W8IQX. Dirk was running 2 watts from his FT-817 to an AlexLoop on 20 meters. If I copied correctly, he was in Florida. QRP never ceases to amaze me!

Happy Holidays to you and yours.

72, Craig WB3GCK

Bike Rack Vertical

[This is an updated version of a post that appears on my old website. – WB3GCK]

I do quite a bit of my QRP operating from portable locations. I like to use simple wire antennas but, truth be told, I really dislike spending my limited operating time trying to get antenna wires up into trees.  Also, when activating parks for Parks on the Air (POTA), I often operate from the cab of my truck and need an antenna that is self-contained and quick to deploy.  This set up fits the bill.

What I did was modify my homebrew roll-on mast support so I could use my hitch-mounted bicycle rack to support it. This only required the drilling of two holes in the roll-on mount. Figure 1 shows the roll-on mount clamped into the bike rack. In this case, I was supporting a 31-foot Jackite pole. After extending the pole and removing the bottom cap, I just lower the pole onto the 1-1/4 inch pipe. That’s all there is to it.

Bike Rack Antenna Mount. A 9:1 unun is attached to the Jackite pole with a bungee cord.
Bike Rack Antenna Mount. A 9:1 unun is attached to the Jackite pole with a bungee cord.

By selecting the right size of pipe, I can use this technique to support a variety of masts. For example, I’ve used this type of mount to support two 5-foot sections of TV antenna mast. I used this configuration to support a 1.2 GHz yagi for DStar digital communications during an ARES-RACES drill years back.

My new truck's first QRP-portable outing.
The Bike Rack Vertical in use

When operating QRP-portable, I often use a vertical antenna made from a 30-foot piece of hook-up wire and fed through a homebrew 9:1 unun with an 18-foot length of RG-8x coax. The unun is just attached to the 31-foot Jackite pole using some small bungee cords. No radials are used, which gives this set-up virtually a zero footprint. You can find more information on this configuration on the EARCHI website. I’ve successfully used this antenna in the field over the past few years. It’s a bit of a compromise, as antennas go, but it has always served me well. The extra height using the bike rack mount seems to help performance a bit. (Although I can’t quantify that, I’m sure the extra height doesn’t hurt.) With the internal antenna tuner in my KX3, I can work all bands from 40 through 10 meters.  Heck, I’ve even used it on 80 meters a bunch of times.

I used this particular antenna configuration countless times in recent years.  It was my “go to” antenna for NPOTA activations.  Within 5 minutes of arrival, I can be on the air. When it’s time to leave, tear down is just as fast. Now, that’s what I’m talkin’ about!

73, Craig WB3GCK

“Stationary-Mobile” with My 19-foot Vertical

Earlier this year, I built a lightweight, 19-foot vertical. Intended for tripod or ground mounting, I did the initial tuning and pruning of the vertical in that configuration. Today, I thought I’d see if it would work mounted on my pickup truck.

I have this plastic crate that I keep in the bed of the pickup truck. I use it to hold parts for my drive-on antenna mount, along with some tools and miscellaneous “stuff.” I hold the crate in place using bungee cords attached to a cargo bar that spans the width of the bed. I decided to make use of the crate as a quick and dirty antenna mount.

I took some 1-inch PVC pipe with a female threaded coupler from a previous antenna project and attached it to an inside corner of the crate with heavy-duty zip ties. I kept this part short enough to fit underneath the tonneau cover when traveling. To mount my 20-foot Black Widow pole, I used a 1-inch PVC male coupler and a reducer to go down to a 3/4-inch PVC pipe. The 3/4-inch PVC pipe fits nicely up inside the Black Widow pole. I went with the Black Widow pole rather than the lighter weight pole I normally use with this antenna since I already had all the PVC parts I needed to mount it.

My makeshift mount. The PVC mount is attached to the plastic crate, while the crate is attached to a cargo bar using bungee cords. The random junk I store in the crate keeps things stable.
My makeshift mount. The PVC mount is attached to the plastic crate, while the crate is attached to a cargo bar using bungee cords. The random junk I store in the crate keeps things stable.

I headed out to a local park today to give it a try. It only took a few minutes to get it set up. From the antenna, I ran some RG-8x coax through a window and into the cab of the truck. I connected the antenna ground to the body of the truck using a short piece of braid to a metal plate used to latch the tonneau cover closed.

The Black Widow pole installed on my makeshift mount.
The Black Widow pole installed on my makeshift mount.

I fired up my antenna analyzer and the SWR was off the charts. On closer inspection, I found the plate I was using for my ground wasn’t actually attached to the body of the truck. Instead, I connected two radials and ran them off the back of the truck. This time the SWR on 40 and 30 was much better. The resonant frequencies in this configuration were higher than when ground-mounted but my KX3’s internal tuner easily handled the minor mismatches.

I started out on 20 meters where this antenna operates as a random wire. I heard N5PHT doing a Parks on the Air (POTA) activation (KFF-3023) down in Texas. I gave him a call and exchanged reports. Moving down the band, I worked XE1XR in Mexico. So, the antenna seemed to be working fine. I checked 30 meters but it was devoid of activity.

The 19-ft vertical in operation.
The 19-ft vertical in operation.

Down on 40 meters, I had a nice ragchew with Bernard VE9BEL. Bernard was operating a club station (VE9CRM) in New Brunswick, Canada. He gave me a 599 and said I was “booming” into New Brunswick. Not bad for 5 watts into a 19-foot loaded vertical. I last worked Bernard a few years ago from Mt. Misery in Valley Forge National Park. We had strong signals both ways on that day, too.

So, it looks like this antenna is usable from the truck. I still need to find a way to connect the ground to the body of the truck. If possible, I’d like to avoid drilling holes in my new truck. This antenna is a little easier to deploy than my usual “Bike Rack Vertical.” The downside is I have to exit the truck to change bands. Life is a series of trade-offs, I guess.

73, Craig WB3GCK

The Quickie Whip

This week, my ham radio activity was focused on an emergency communications exercise with my local ARES-RACES group.  I thought I’d do a post about the simple whip antenna I used with a dual-band radio.  I cobbled this  set up together a few years back and it has come in handy on several occasions.

During the exercise, I was operating indoors with easy access to our local repeaters. I was copying digital traffic using the Narrowband Emergency Messaging System (NBEMS), so a handheld radio wasn’t a good option. In this situation, a dual-band mobile radio and this little whip antenna hack were able to get the job done.

The Quickie Whip attached to my old Icom 207-H dual band radio
The Quickie Whip attached to my old Icom 207-H dual band radio

For the whip, I use commercially available, collapsible BNC whip antennas for the 2 meter and 440 bands.  To connect the whip to the radio, I use a UHF-Male to BNC-Female right angle adapter I picked up on eBay. To help improve the efficiency, I attach two 1/4-wave counterpoise wires, one for 2 meters (about 19 inches) and one for 440 (about 6.3 inches).

Quickie Whip Antenna components: telescopic whip antenna, PL-259 to BNC-F right-angle adapter, and the modified 9V battery clip for the counterpoise wires.
Quickie Whip Antenna components: telescopic whip antenna, PL-259 to BNC-F right-angle adapter, and the modified 9V battery clip for the counterpoise wires.

To attach the counterpoise wires, I re-purposed a 9-volt battery holder. I just drilled out one of the mounting holes and used a small bolt and nut to attach the wires. The clip is just about the perfect size to snap onto the right angle adapter.

The antennas I use came from Smiley Antenna. I have 5/8-wave whips for 2 meters and 440, along with a halfwave whip for 2 meters. Although some of the antennas are specified to handle 50 watts, I generally use them only for 10 watts or less (in the interest of RF safety). If I need to run more power, I’ll go with an antenna placed a safe distance away.

I’ve used this simple antenna arrangement in several situations in recent years. It’s become a permanent part of my emergency communications go-kit.

73, Craig WB3GCK

 

Trailer Operations – Lessons Learned

We recently wrapped up our first camping season with our little travel trailer. Over the past 6 months, I learned a few things about operating inside a metal box that has lots of electrical doo-dads inside.

Antenna

Over the 18 years of camping in a pop-up tent trailer, I evolved to a simple but effective vertical antenna, which was supported by the trailer. We basically used the old camper as a tent on wheels.  It had few electrical amenities, so noise wasn’t an issue.  Being mostly canvas, the pop-up camper had little influence on the vertical antenna I attached to it.

On our first trip with the new camper, I tried something similar. I used the new camper to support my vertical antenna.  Bad choice.  I quickly learned that the new travel trailer was a different animal.  I made contacts but there were two main issues: 1) The camper is a big metal object and 2) it’s noisy as heck when plugged into AC power at the campsite.

It became quickly apparent that I needed to keep the antenna as far away from the trailer as possible. For most trips, I used a 29.5-foot vertical wire supported by a 31-foot Jackite pole. I fed it with a 9:1 unun and ran a 25-foot piece of coax into the trailer. In some campgrounds, I was able to strap the Jackite pole to a lantern post or other object. Otherwise, I used my Jackite ground mount. (Unfortunately, Jackite no longer sells this ground mount.)

Some state parks provide lantern hanging posts that make great antenna supports. These are pretty common in Maryland state parks.
Some state parks provide lantern hanging posts that make great antenna supports. These are pretty common in Maryland state parks.

This set up worked well for me. There’s still some intermittent noise on 40 meters but it’s still usable. The other bands are pretty quiet. A pleasant surprise is that my KX3 loads up this antenna on 80 meters and the noise there is very low. I’ve had some nice late night/early morning contacts on 80 meters. On trips when we camped without an electrical hookup and used battery power only, I had no issues at all with noise.

My trusty 29.5-foot wire vertical. It's supported by a 31-foot Jackite pole and fed with a homebrew 9:1 unun.
Jackite ground mount. I bought this years ago. This particular mount is no longer sold by Jackite.

Radio Location

When the weather is decent, I prefer to operate outside of the camper, either from my camp chair or picnic table. However, when the weather is cold or rainy, I seek the shelter of the camper.

WB3GCK making some straight key contacts from the trailer.
Radio set up inside the trailer. The coax is routed through the window.

Initially, my big dilemma was routing a coax cable into the trailer. I really didn’t want to drill holes in a brand new trailer so I took the easy way out. There’s a conveniently located window next to the dinette table, so I brought the coax through there. To keep the bugs and inclement weather out, I used a piece of pipe insulation to help close up the gap. This window is also under the awning, so I get some additional weather protection there.  The dark-colored pipe insulation isn’t very noticeable, so my set up is “XYL-approved.”

Pipe insulation used to help close the gap in the window. The black pipe insulation is barely noticeable making it XYL-approved.
Pipe insulation used to help close the gap in the window. The black pipe insulation is barely noticeable making it XYL-approved.

Wrapping It Up

So, now it’s time to Winterize the trailer and put it into hibernation until Spring. Over the Winter, I’ll have lots of time to look into other antenna options I can try next year.

73, Craig WB3GCK

A Lightweight Portable Vertical

I bought a lightweight telescoping pole on eBay a while back. It collapses down to 26 inches and weighs less than 12 ounces. Best of all, I only paid around $10 for it. While it was advertised as a 7.2-meter pole (approximately 23.6-feet), I actually measure about 19.5-feet when extended. This pole was just begging for some sort of antenna to support.

After trying different types of non-resonant wires with it, I decided to build some sort of resonant antenna. For quick excursions to the field, I often take the AlexLoop. However, sometimes it’s nice to have something a bit more frequency-agile. I wanted something that is easy to deploy and could cover the 40, 30, and 20-meter bands.

I started off planning to build a vertical with a 16.5-ft radiator to make it resonant on 20 meters. I could then build some loading coils to make it resonant on 40 and 30 meters. In the end, I went a slightly different way with this antenna.

With the lousy band conditions lately, I spend most of my time on 40 meters. I decided to take advantage of the full length of the pole.  So, my concept was to use a 19-foot radiator with loading coils for 40 and 30. On 20M and higher, I would use the radiator as a random wire and use a tuner.

Schematic diagram of the matching network for the 19-ft vertical
Schematic diagram of the matching network for the 19-ft vertical

As you can see in the schematic, I feed the antenna through a 1:1 choke, consisting of 10 bifilar turns of #22 hookup wire on an FT140-61 toroid. I calculated the values for the loading coil using some online calculators (see notes below). From there, I went through several iterations of testing and adjusting to arrive at the final values. For the 40M loading coil, I ended up with 29 turns of #22 enameled wire on a T130-2 toroid. I made a tap at 11 turns for the 30M band.

Interior of the matching unit
Interior of the matching unit

I mounted both coils in a small box and used some small bolts to make the tap points accessible for band changing. I also made a little jumper with alligator clips to short out various portions of the loading coil for the different bands.

The matching network is attached to the pole with a small bungee cord. In this picture, the red jumpers are configured for the 30M band.
The matching network is attached to the pole with a small bungee cord. In this picture, the red jumpers are configured for the 30M band.

The pole won’t support much weight, so I built the 19-foot radiator from #26 Stealth wire (Part #534) from the Wireman. Because the pole is made from carbon fiber, I try to let the top of the pole bend over slightly, to keep the wire away from the pole. I don’t know how much influence the carbon fiber pole would have on tuning but I figure I’d avoid introducing another variable.

For radials, I used a 25-foot roll of cheap speaker wire and used it to throw together four 12.5-foot radials. Again, I grabbed what I had on hand and went with it.  While the four radials seem to be working out OK, I plan to add a couple more for good measure.

I should note that all the materials here were selected based on availability in my junk box. So, there’s certainly plenty of wiggle room here for experimenting.

I made up a little tripod adapter out of some PVC pipe. One end slides over the post on my tripod, while the other end slides up inside the bottom of the collapsible pole. I also found a screw driver with a handle that fits nicely inside the bottom of the pole. So, for ground-mounting, I can just shove the screwdriver in the ground and place the pole on top of it. This works surprisingly well and allows me to leave the tripod at home.

Vertical mounted on a tripod. My backpack is attached to the bottom of the tripod to help stabilize it in the wind.
Vertical mounted on a tripod. My backpack is attached to the bottom of the tripod to help stabilize it in the wind.

After considerable tweaking I ended up with SWRs of less than 2:1 across the entire 40M band and less than 1.5:1 across the 30M band. On 20M and higher, the tuner in my KX3 loads it up with no problems.

The vertical ground-mounted. The pole is light enough to be supported by a screwdriver shoved into the ground.
The vertical ground-mounted. The pole is light enough to be supported by a screwdriver shoved into the ground.

I’ve been very pleased with the results on 40M so far. It seems to radiate pretty well. I’ve also made contacts on 30M and 20M but, honestly, I need to use it more on those bands to get a better feel for the performance.  It’s hard to evaluate antennas when the band conditions are as poor as they have been lately.

Although the antenna works, there are a few things I would do differently, if I were to build another one:

  • My physical packaging could be better.  While the enclosure I used is nice and compact, it’s a little cramped for experimentation.  During development, coil adjustments were tough.
  • Separate coils for 40M and 30M would make the tuning much easier.  The tapped coil was a challenge to adjust.

I like the form factor and easy setup of this antenna.  I can set it up in a few minutes and it is very easy to transport by backpack or bike.  Now to give it some more air time in the field.

Time will tell if it’s a keeper.

72, Craig WB3GCK

 

Notes:

  1. Loading coil calculator:  http://www.k7mem.com/Ant_Short_Dipole.html   (Note:  The calculator I originally used for this project is no longer online.  This calculator should work.  Just use one leg of the dipole.)
  2. Toroid calculator:  http://www.66pacific.com/calculators/toroid-coil-winding-calculator.aspx

Save

Save

The “Up and Outer” Antenna

[This is an updated version of a post that appears on my old website. – WB3GCK]

Something about the “Up and Outer” antenna has fascinated me since I first came across it in the 1974 edition of the ARRL Antenna Book. This antenna, which was once popular many years ago, is about as simple as it gets. Simply put, the Up and Outer is a dipole or doublet where one leg is vertical while the other leg is horizontal. Although it seems to be overlooked by Amateurs these days, this antenna offers some significant benefits:

  • It’s a good limited space antenna since one leg of the doublet is vertical. It only requires half of the space that a horizontal doublet would take up.
  • When fed with balanced line and used with a suitable transmatch, it’s a good multi-band antenna.
  • It combines characteristics of both verticals and horizontal wire antennas. That is, it is good for both local and DX work.
  • It’s very easy to build and erect.
The "Up & Outer" is essentially a doublet with one vertical leg and one horizontal leg.
The “Up & Outer” is essentially a doublet with one vertical leg and one horizontal leg.

First, a little background on this antenna. According to some handwritten notes from QRP Hall of Famer, C. F. Rockey W9SCH (SK), this antenna goes back to the 20s and 30s. Lew McCoy W1ICP (SK) wrote about it in the October 1960 edition of QST [1]. He didn’t use the name, “Up and Outer;” he merely referred to it as a “limited space antenna.” McCoy recommended horizontal and vertical elements of 30-feet each for operation on 80-10 meters. He also recommended using an open-wire feedline to minimize losses. Information from McCoy’s article has appeared for years in the ARRL Antenna Book. (I first saw it in my 1974 edition [2] and it was still shown in the 1997 edition [3].)

W9SCH wrote a couple of articles about this antenna for SPRAT  and appears to have coined the term, “Up and Outer.” In the first SPRAT article [4], Rock suggested using 1/4 wave elements for the lowest band and feeding it with either coax (for single band operation) or balanced line (for multi-band operation). In a follow-up article [5], Rock suggests pruning the horizontal element to equalize the current in the balanced feeder. He noted the imbalance when operating with the horizontal element close to ground. He started with 16-foot elements to cover 30-10 meters.

Another Hall of Famer, L. B. Cebik W4RNL (SK), wrote about a coax-fed version of this antenna for 10 meters [6]. Cebik built his antenna using aluminum tubing and referred to it as the “L Antenna.”

I also exchanged some correspondence years ago with Fred Bonavita K5QLF (SK), another QRP Hall of Famer and fan of the Up and Outer. He told me that W9SCH once mentioned using the copper ball from an old toilet float to top-load the vertical element of the antenna. I have never tried it but it does sound intriguing!

The "Up and Outer" antenna mounted on a 3rd-story deck in Corolla, North Carolina.
The “Up and Outer” antenna mounted on a 3rd-story deck in Corolla, North Carolina.

For me, the Up and Outer has turned out to be an ideal portable antenna to use while on vacation in a rented house on the Outer Banks of North Carolina. For several years I’ve used a 56-foot doublet with one wire supported by a 28-foot fiberglass telescopic mast and one 28-foot leg run horizontally. The vertical radiator is typically situated on a 3rd or 4th story wooden deck with the horizontal wire secured to a nearby tree or other support. For feedline, I use 25-feet of TV twinlead (the cheap brown stuff). Using either a homebrew Z-match tuner or an autotuner with a short run of coax to an external 4:1 balun, I’ve been able to use this antenna on 40-10 meters. Your mileage may vary. Depending on the transmatch you use, you might need to adjust the length of the feedline to get a good match on 40 meters.

"Up and Outer" feedpoint
“Up and Outer” feedpoint

I did some quick modeling of a typical Outer Banks installation using MMANA-GL and you can clearly see the results of the combined horizontal and vertical elements. The horizontal polarity (shown in blue) shows lobes perpendicular to the axis of the horizontal wire, similar to a dipole. The vertical polarity (shown in red) shows a fairly low take-off angle and exhibits some slight directivity on 40 meters in the direction of the horizontal wire. This effect is due to the proximity to ground of the horizontal element and diminishes as you go higher in frequency. So, try to mount the Up and Outer as high above ground as you can.

"Up and Outer" 40M pattern
“Up and Outer” 40M pattern
"Up and Outer" 30M pattern
“Up and Outer” 30M pattern
"Up and Outer" 20M pattern
“Up and Outer” 20M pattern

The modeling bears out my empirical results with the antenna. My version of the Up and Outer has worked very well for both stateside contacts and DX. In particular, it has been very effective for DX contacts on 30 meters. As an added bonus, the 56-foot doublet can also be pressed into service as a normal horizontal antenna in locations where the Up and Outer configuration isn’t possible. So, it’s like getting two antennas in one. Can’t beat that.

If you are looking for a limited-space antenna, give this obscure classic a try!

73, Craig WB3GCK

 

References:
1. McCoy, Lewis G. “A Limited-Space Antenna.” QST October 1960: pp 23-25. (Available in the ARRL online archives)
2. “The ARRL Antenna Book.” 13th Edition, 1974. Newington, CT. pp 187-188.
3. “The ARRL Antenna Book.” 18th Edition, 1997. Newington, CT. pp 7-15, 7-16.
4. Rockey, C. F. “Up and Outer.” SPRAT Issue #67 (Summer 1991): p 18.
5. Rockey, C. F. “A Four Band Up and Outer Antenna.” SPRAT Issue #69 (Winter 1991/1992): p 16.
6. Cebik, L. B. “Whips, Tubes and Wires: Building a 10-Meter L Antenna.” QST December 1999: pp 52-54. (Available in the ARRL online archives)

© 2009-2017 Craig A. LaBarge